Continual Learning / Task Free Settings

2020/08

Previous

o Deal with catastrophic forgetting.

o Learn current task.

Some current works

o Deal with catastrophic forgetting.

Exploit existing knowledge to accelerate future learning.
 (Achieved by Meta-Learning)

o Get rid of task boundaries. (Task-Free)

Common Approaches

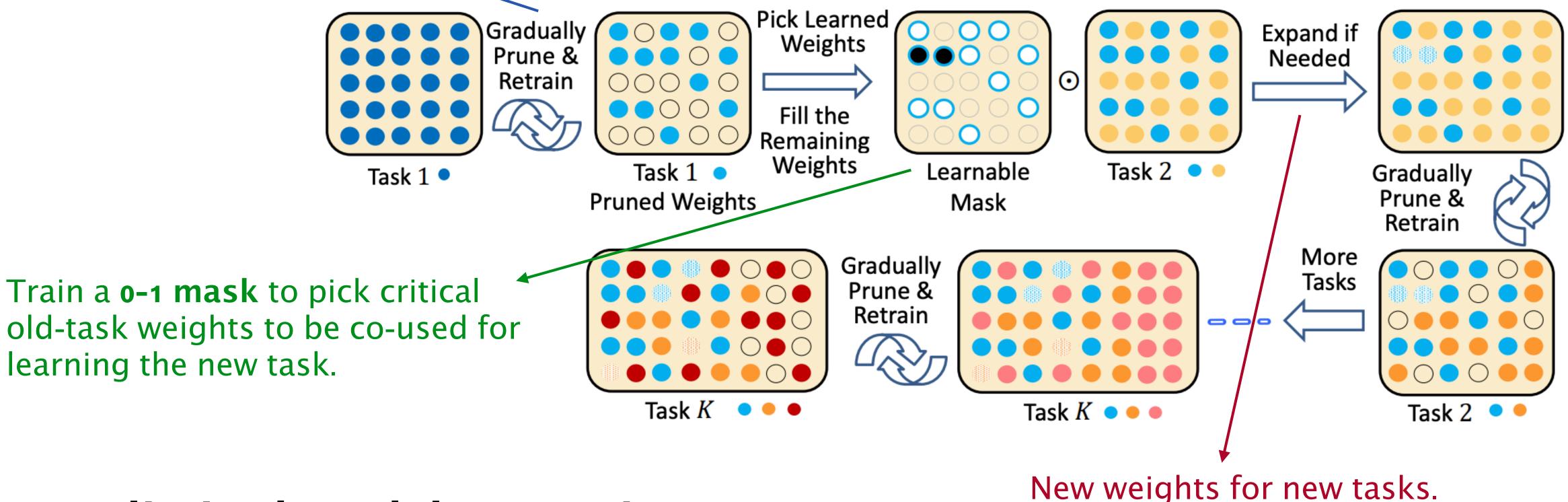
- knowledge.
- o **Rehearsal**:
- o **Dynamic Expansion**: Increase network capacity to handle new tasks.

o **Regularization**: Impose constraints on the update of the weights to retain

o **Extra Memory**: Use extra memory to store data from previous tasks. o **Generative Replay**: Mimic past data by generative models (GAN, VAE, etc).

Dynamic Expansion

Model Compression (Gradually Prune): remove the model redundancy to the reduce the complexity



Very limited model expansion.

Compacting, (Picking) and (Growing) for Unforgetting Continual Learning. NIPS 2019.

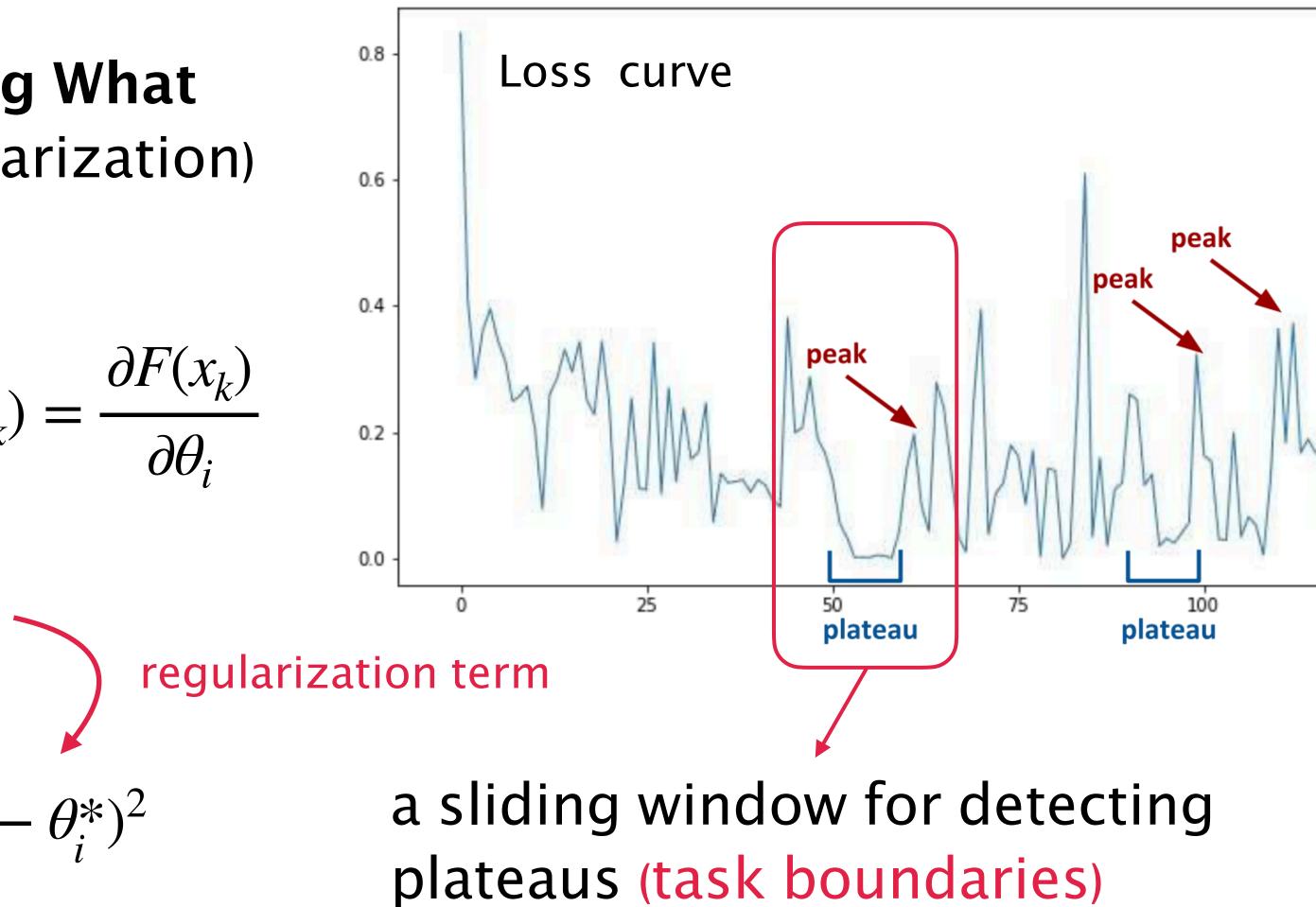
Task Free

Task-Free Continual Learning. CVPR 2019. (Regularization)

Memory Aware Synapses: Learning What (Not) to Forget. ECCV 2018 (Regularization)

$$F(x_k; \theta + \delta) - F(x_k; \theta) \approx \sum_i g_i(x_k)\delta_i \Rightarrow g_i(x_k)$$

importance weight: $\Omega_i = \frac{1}{N} \sum_{k=1}^N ||g_i(x_k)||$
final loss: $L(\theta) = L_n(\theta) + \frac{\lambda}{2} \sum_i \Omega_i(\theta_i - \theta_i)$

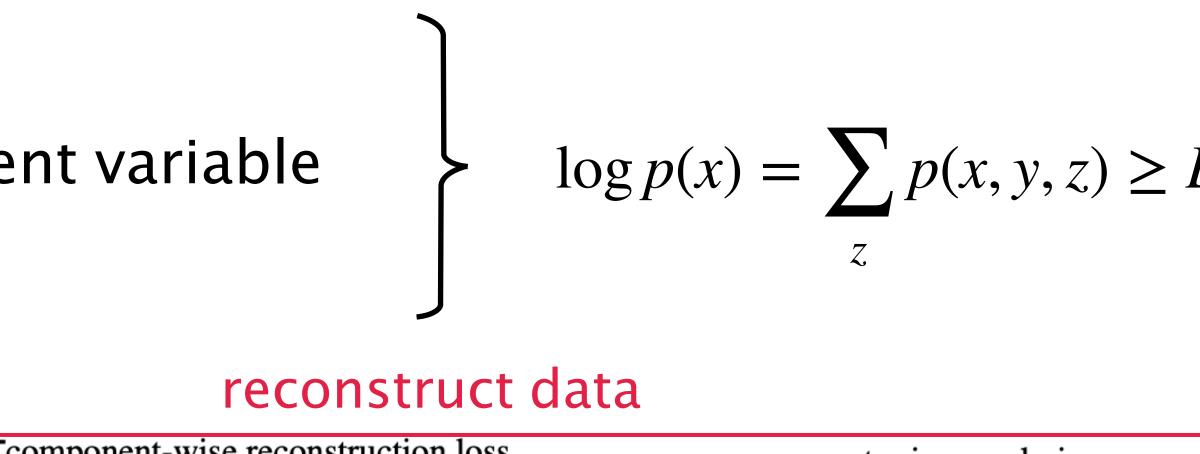


Task Free **Continual Unsupervised Representation Learning. NIPS 2019.** (Generative Replay + Dynamic Expansion) Generative Replay via VAE: $y \sim Cat(\pi)$: current task id $z \sim N(\mu_z(y), \sigma_z^2(y))$: task-specific latent variable $\log p(x) = \sum_z p(x, y, z) \ge L$ $x \sim \text{Bernoulli}(\mu_{z}(z))$: input data

ELBO (maximize): $\mathcal{L} \approx$

$$\sum_{k=1}^{K} q(\mathbf{y} = k | \mathbf{x})$$

$$- \operatorname{KL}(q(\mathbf{y} | \mathbf{x}) || p(\mathbf{y})$$
Categorical regulariser



$$\underbrace{\operatorname{component-wise reconstruction loss}}_{\log p(\mathbf{x} \mid \widetilde{\mathbf{z}}^{(k)})} - \underbrace{\operatorname{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y} = k) \mid \mid p(\mathbf{z} \mid \mathbf{y} = k))}_{\operatorname{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y} = k) \mid \mid p(\mathbf{z} \mid \mathbf{y} = k))}$$

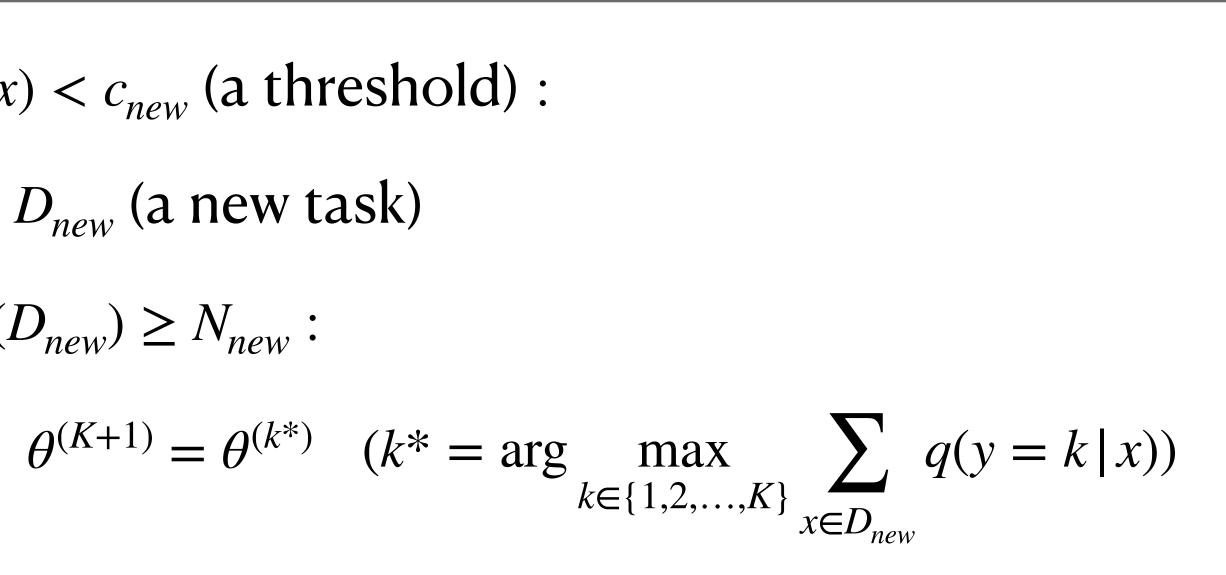
perform task clustering

Task Free

Continual Unsupervised Representation Learning. NIPS 2019. (Generative Replay + Dynamic Expansion)

Dynamic expansion:

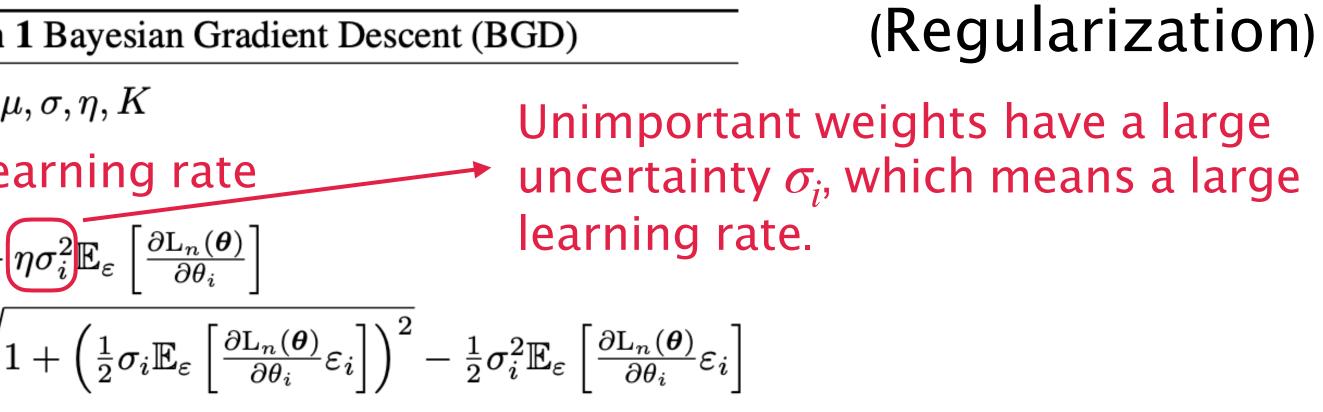
if ELBO(x) < c_{new} (a threshold) : $x \rightarrow D_{new}$ (a new task) if $N(D_{new}) \ge N_{new}$:



Task Free Task Agnostic Continual Learning Using Online Variational Bayes. arXiv 2019. Algorithm 1 Bayesian Gradient Descent (BGD) **Initialize** μ, σ, η, K Bayes' rule: **Repeat** learning rate learning rate. $\mu_i \leftarrow \mu_i - \eta \sigma_i^2 \mathbb{E}_{\varepsilon} \left[\frac{\partial \mathcal{L}_n(\boldsymbol{\theta})}{\partial \theta_i} \right]$ $p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)}$ $\sigma_i \leftarrow \sigma_i \sqrt{1 + \left(\frac{1}{2}\sigma_i \mathbb{E}_{\varepsilon} \left[\frac{\partial \mathcal{L}_n(\boldsymbol{\theta})}{\partial \theta_i}\varepsilon_i\right]\right)^2} - \frac{1}{2}\sigma_i^2 \mathbb{E}_{\varepsilon} \left[\frac{\partial \mathcal{L}_n(\boldsymbol{\theta})}{\partial \theta_i}\varepsilon_i\right]}$ incremental Bayes[,] rule: Until convergence criterion is met. The expectations are estimated using Monte Carlo method, with $\theta_i^{(k)} = \mu_i + \varepsilon_i^{(k)} \sigma_i$: $p(\theta \mid D_n) = \frac{p(D_n \mid \theta)p(\theta \mid D_{n-1})}{p(D_n)}$

Doesn't care about task boundaries.

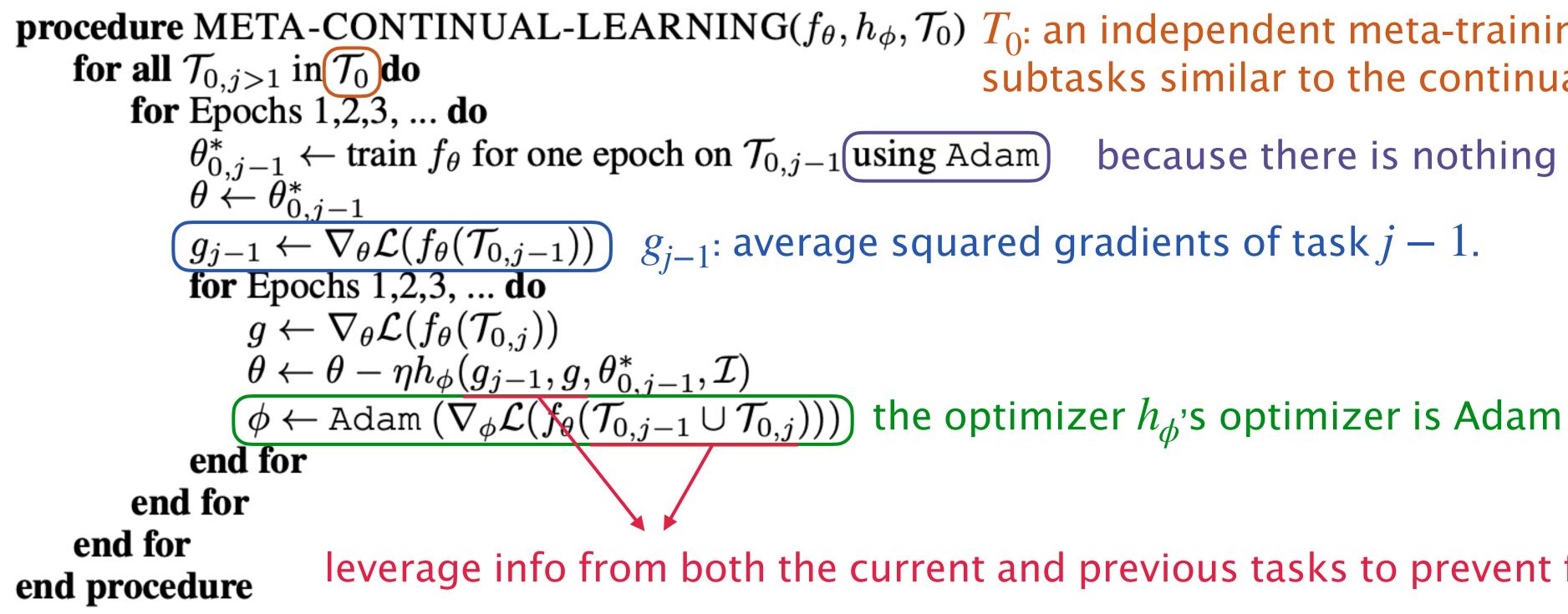
 $\mathbb{E}_{arepsilon}$



$$\mathbb{E}_{\varepsilon} \left[\frac{\partial \mathcal{L}_{n} \left(\boldsymbol{\theta} \right)}{\partial \theta_{i}} \right] \approx \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{L}_{n} \left(\boldsymbol{\theta}^{(k)} \right)}{\partial \theta_{i}}$$
$$\left[\frac{\partial \mathcal{L}_{n} \left(\boldsymbol{\theta} \right)}{\partial \theta_{i}} \varepsilon_{i} \right] \approx \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{L}_{n} \left(\boldsymbol{\theta}^{(k)} \right)}{\partial \theta_{i}} \varepsilon_{i}^{(k)}$$

Meta Continual Learning. arXiv 2018.

Algorithm 1 Meta continual learning for training h_{ϕ}



- Meta-Learning: train a neural network h_{ϕ} (MLP) to be optimizer, which can predict update steps using existing knowledge instead of based on current gradients only.
 - **procedure** META-CONTINUAL-LEARNING($f_{\theta}, h_{\phi}, \mathcal{T}_0$) T_0 : an independent meta-training dataset, containing subtasks similar to the continual learning tasks
 - because there is nothing to preserve

- leverage info from both the current and previous tasks to prevent forgetting

Meta Continual Learning. arXiv 2018.

Continual Learning: use the trained optimizer h_{d}

Algorithm 2 Continual learning using the trained h_{ϕ^*}

procedure CONTINUAL-LEARNING $(f_{\theta}, h_{\phi^*}, \{\mathcal{T}_1, \mathcal{T}_2, \cdots\})$ for all \mathcal{T}_i do if i = 1 then $\theta_1^* \leftarrow \text{Train } f_{\theta_1} \text{ on } \mathcal{T}_1(\text{using Adam})$ because there is nothing to preserve else $\theta \leftarrow \theta_{i-1}^*$ $g_{i-1} \leftarrow \bar{\nabla}_{\theta} \mathcal{L}(f_{\theta}(\mathcal{T}_{i-1}))$ for Epochs 1,2,3, ... do $g \leftarrow \nabla_{\theta} \mathcal{L}(f_{\theta}(\mathcal{T}_i))$ $\theta \leftarrow \theta - \eta h_{\phi^*}(g_{i-1}, g, \theta^*_{i-1}, \mathcal{I})$ end for $\theta_i^* \leftarrow \theta$ end if end for end procedure

leverage info from both the current and previous tasks to prevent forgetting

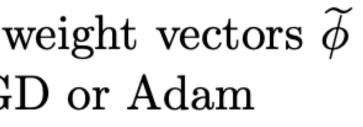
Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference. ICLR 2019. (Reptile + Experience Replay)

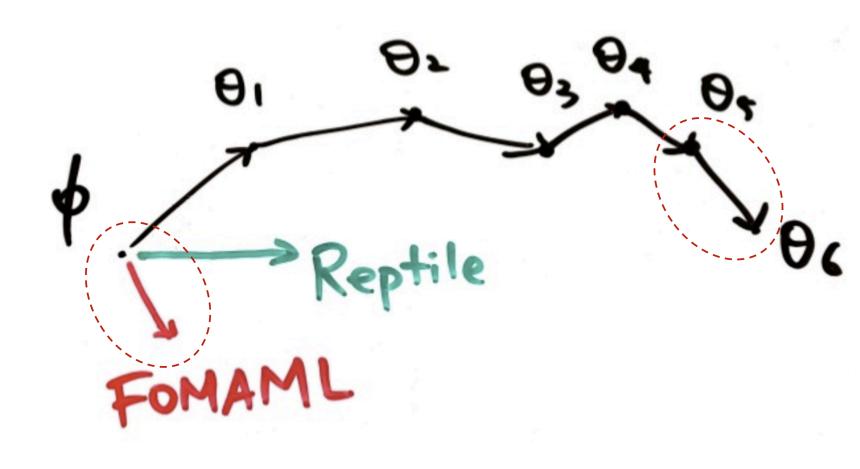
Reptile (On First-Order Meta-Learning Algorithms. arXiv 2018.)

Algorithm 1 Reptile (serial version)

Initialize ϕ , the vector of initial parameters for iteration $= 1, 2, \ldots$ do Sample task τ , corresponding to loss L_{τ} on weight vectors $\tilde{\phi}$

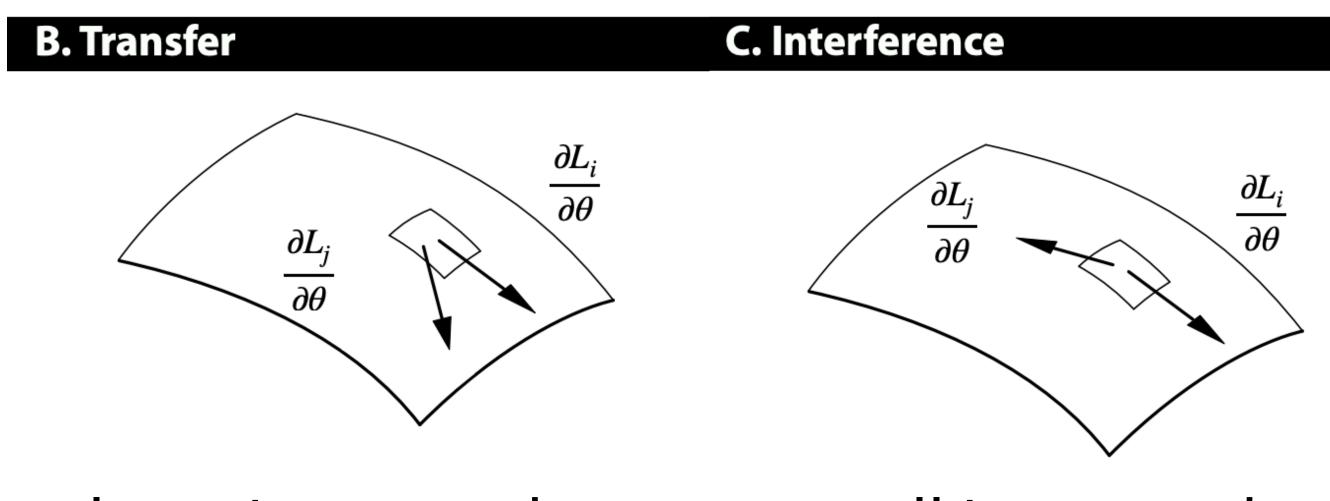
Compute $\tilde{\phi} = U_{\tau}^k(\phi)$, denoting k steps of SGD or Adam Update $\phi \leftarrow \phi + \epsilon(\tilde{\phi} - \phi)$ end for





Minimizing Interference. ICLR 2019.

Objective of Reptile: $\theta = \arg \min$



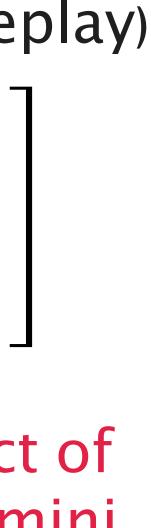
large inner product

Learning to Learn without Forgetting by Maximizing Transfer and (Reptile + Experience Replay)

$$\mathbb{E}_{B_1,\ldots,B_s \sim D_t} \left[2\sum_{i=1}^s \left[L(B_i) - \sum_{j=1}^{i-1} \alpha \frac{\partial L(B_i)}{\partial \theta} \cdot \frac{\partial L(B_j)}{\partial \theta} \right] \right]$$

Maximize the inner product of gradients of two different mini batches for the same task.

small inner product



Learning to Learn without Forgetting by Maximizing Transfer and Minimizing Interference. ICLR 2019. (Reptile + Experience Replay)

Reptile + Experience Replay:

 $\theta = \arg\min_{\theta} \mathbb{E}_{(x_{11}, y_{11}), \dots, (x_{sk}, y_{sk})} \mathcal{M} \left[2\sum_{i=1}^{s} \sum_{j=1}^{k} \left[I \right] \right]$

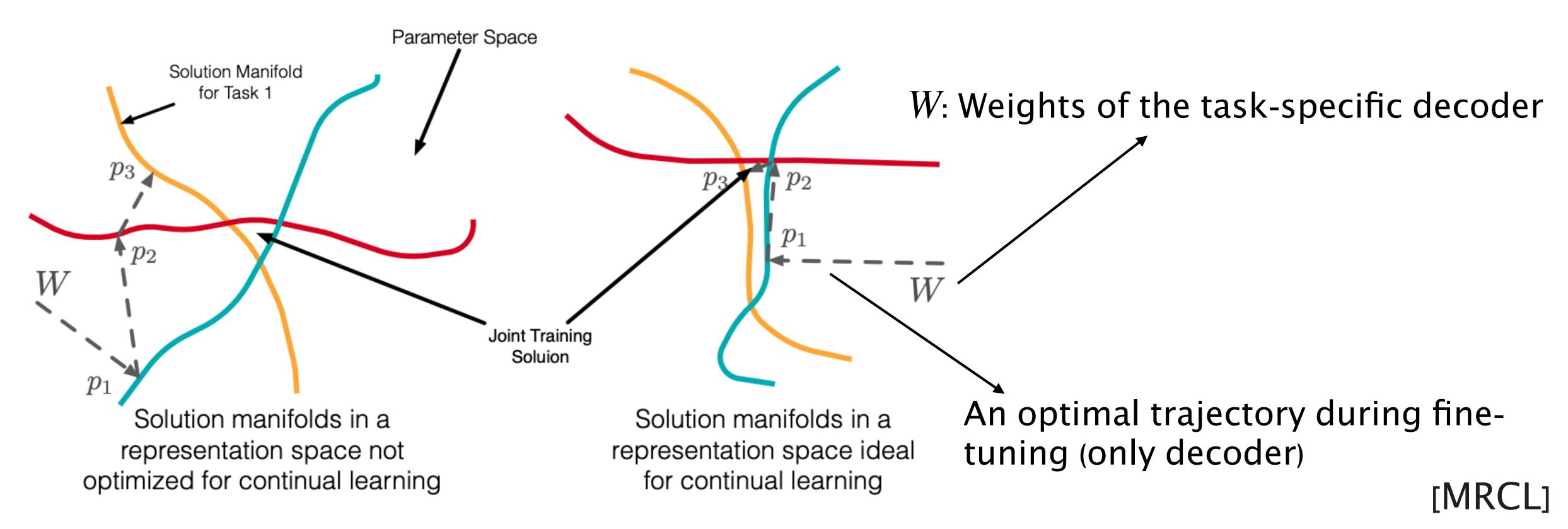
current example + past examples **Summary**

$$\left[L(x_{ij}, y_{ij}) - \sum_{q=1}^{i-1} \sum_{r=1}^{j-1} \alpha \frac{\partial L(x_{ij}, y_{ij})}{\partial \theta} \cdot \frac{\partial L(x_{qr}, y_{qr})}{\partial \theta} \right]$$

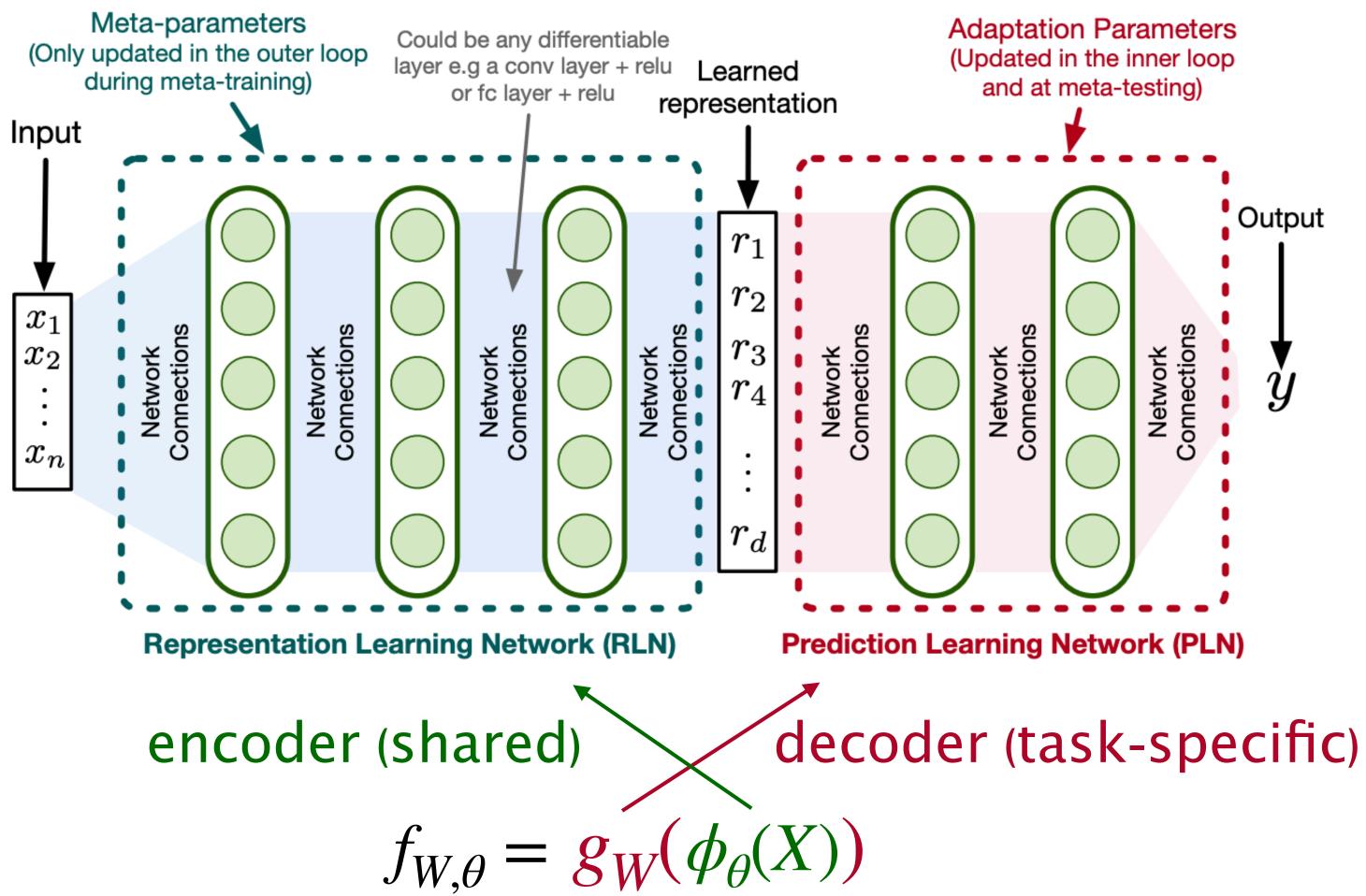
- o **Reptile**: accelerate future learning
- o **Experience Replay**: prevent forgetting

Meta-Learning Representations for Continual Learning. NIPS 2019. (based on MAML)

× MAML: Find the best initial parameters \sqrt{MRCL} : Find the best representation (encoder)



Meta-Learning Representations for Continual Learning. NIPS 2019. (based on MAML)



Algorithm 2: Meta-Training : OML **Require:** $p(\mathcal{T})$: distribution over CLP problems **Require:** α , β : step size hyperparameters 1: randomly initialize θ while not done do randomly initialize W3: Sample CLP problem $\mathcal{T}_i \sim p(\mathcal{T})$ 4: Sample S_{train} from $p(S_k|\mathcal{T}_i)$ 5: $W_0 = W$ inner loop: update decoder on S_{train} 6: for j = 1, 2, ..., k do 7: $(X_j, Y_j) = \mathcal{S}_{train}[j]$ 8: $W_j = W_{j-1} - \alpha \nabla_{W_{j-1}} \ell_i(f_{\theta, W_{j-1}}(X_j), Y_j)$ 9: end for 10: Sample S_{test} from $p(S_k | T_i)$ 11: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \ell_i(f_{\theta, W_k}(S_{test}[:, 0]), S_{test}[:, 1])$ 12: 13: end while outer loop: update encoder on S_{tes}



Task-Free Meta Continual Learning

Task Agnostic Continual Learning via Meta Learning. ICML 2020 LifelongML Workshop. (Reptile + Regularization)

incremental Bayes' rule: $p(\theta | D_{0:t}) = \frac{p(t)}{2}$

objective: $q_t(\theta) = \arg\min_{q(\theta)} KL(q_t(\theta) || p(\theta | D_{0:q(\theta)} ||$ $p(D_t | \theta,$

 $D_t^{ctx} = \{(x_{t-k},$

Doesn't care about task boundaries.

$$\frac{(D_t | \theta, D_{0:t-1})p(\theta | D_{0:t-1})}{p(D_t | D_{0:t-1})}$$

$$D_{0:t-1} = KL(q_t(\theta) || q_{t-1}(\theta)) \text{ Reptile model}$$

$$D_{0:t-1} \approx p(D_t | \theta, D_t^{ctx}) = p(y_t | f_{\theta}(x_t))$$

$$y_{t-k}, \dots, (x_{t-1}, y_{t-1}) \text{ (a sliding window with a fixed I)}$$

[What & How]

Summary

Method	Task Free?	Meta- Learning?
Task Free Continual Learning (CVPR 2019)	\checkmark	
CURL (NIPS 2019)	\checkmark	
BGD (arXiv 2019)	\checkmark	
Meta Continual Learning (arXiv 2018)		
MER (ICLR 2019)		\checkmark
MRCL (NIPS 2019)		
What & How (ICLR 2020 Workshop)	\checkmark	\checkmark

online changepoint detection?

- Gaussian Process Change Point Models. ICML 2010.
- Bayesian Online Changepoint Detection. 2007.

Details

- detect task boundaries by detecting plateaus on loss surface using a sliding window (?)
- o MAS (a regularization-based method)
- o generative replay (VAE)
- o **cluster** samples into different tasks (dynamic expansion)
- o online variational Bayes
- o without detecting task boundaries (?)
- o train a neural network to be optimizer
- o use info of the previous task to prevent forgetting
- Reptile + experience replay
- o MAML
- o train an encoder instead of a parameter initialization
- o Reptile + online variational Bayes
- o without detecting task changes (?)

