Continual Learning

Meta Continual Learning / Task Free Settings

AR 5%
2020/08

Goals

Previous

o Deal with catastrophic forgetting.

Some current works

o Deal with catastrophic forgetting.

o Learn current task.

o Exploit existing knowledge to
accelerate future learning.

(Achieved by Meta-Learning)

o Get rid of task boundaries.
(Task-Free)

Common Approaches

o Regularization: Impose constraints on the update of the weights to retain
knowledge.

o Rehearsal:
o Extra Memory: Use extra memory to store data from previous tasks.

o Generative Replay: Mimic past data by generative models (GAN, VAE, etc).

o Dynamic Expansion: Increase network capacity to handle new tasks.

Dynamic Expansion

[Compacting}(Picking)and(Growingfor Unforgetting Continual Learning. NIPS 2019.

Model Compression (Gradually Prune): remove the model redundancy to the reduce the complexity

\

(@00 0 0\Gradually (@O @ @ O\Pickleamed 555 7 (@ ®®) expandif (@ ®®
©00 00 |Prunc& (00O OO & @00 O| |00@® " ®| Needed | @0 @
@00 ® ® | Retrain | OO0 @O > O |6 ® > o
00000 7\ (0000®| gjthe [OO O| |ee® © o0 ©
Task 1 ® Task 1 o Weights Learnable Task 2 ® Gradually
Mask Prune &
Retrain
Train a 0-1 mask to pick critical o0 00000 I;rune.& o0 oO T X Yo
old-task weights to be co-used for :‘ ‘.5:8 ;%‘ oo ° == L C.). ‘.O
learning the new task. 0000000 "/ oo J ger ey
Task K ® ¢ @ Task K @ Task 2 @

. . _ New weights for new tasks.
Very limited model expansion.

Task Free

Task-Free Continual Learning. CVPR 2019.

(Regularization)

0.8 -

Memory Aware Synapses: Learning What
(Not) to Forget. ECCV 2018 (Regularization) o

| LOoSss curve

(| peak
. | | peak \
a F (xk) "." | | |\' Peak ‘ Ir’ | \~ "' "|
F(x;0+0) — F(x;0) = Z 8i(X)0; = 8i(x;) = pY: 02 ALY [N \ \[' 1N L
: | s [N TRV I A AN |
i l LU N UM R
IV IV L) LW
] <« o | e [0 L g -
importance weight: Q. = — 2 g ()l ’ - plateau | plateau
Nk:1 7 regularization term /

. A 2
final loss: L(0) = L,(0) += Z Q(6; — 0¥)

a sliding window for detecting
plateaus (task boundaries)

Task Free

Continual Unsupervised Representation Learning. NIPS 2019.

(Generative Replay + Dynamic Expansion)
Generative Replay via VAE:

y ~ Cat(x): current task id

z~ N (y), azz(y)): task-specific latent variable log p(x) = Zp(x, v,2) > L
x ~ Bernoulli(.(z)): input data

reconstruct data

K component posterior [component-wise reconstruction loss component-wise regulariser T
ELBO (maximize): £ = Z q(y = k|x) log p(x|z®) —KL(q(z |x,y =k)||p(z|y =k))
k=1

KLy |0)

Categorical regulariser

perform task clustering
- [CURL]

-

Task Free

Continual Unsupervised Representation Learning. NIPS 2019.
(Generative Replay + Dynamic Expansion)

Dynamic expansion:

if ELBO>x) < ¢

new

(a threshold) :

x = D__ (a new task)

new

if N(D

new

) Z Nnew :

OEFD = 9 (k* = arg max Z qg(y = k| x))

ke{1.2,...K
E{ o , }XEDnew

[CURL]

Task Free

Task Agnostic Continual Learning Using Online Variational Bayes. arXiv 2019.

Algorithm 1 Bayesian Gradient Descent (BGD) (RegUIarizatiOn)
Bayes’ rule: Imitialize 1., 7,7, K Unimportant weights have a large
Repeat €arning rate —* uncertainty o;, which means a large
(D | 0)p(0) i i —[no? :. [8L8,,éi6)] learning rate.
p@|D) = >
p(D) o o1+ (oiEe [25@.])” - 102, [250]
incrementa| BaYES’ rUIE: Until convergence criterion is met.
The expectations are estimated using Monte Carlo method,
with 81" = p; + Mo
p(D,|0)p@|D,_,) oo
p@|D,) = K (k)
pD,) . [aLn (9)} 1 Z"’Ln (6%)
"l o6 | K&~ 06,
Doesn’t care about task i [6Ln 0)] L g5 o (6%)
£ Ei| =~ -~ E;
boundaries. 5 Kig o
- [BGD]

Meta Continual Learning

Meta Continual Learning. arXiv 2018.

Meta-Learning: train a neural network h¢ (MLP) to be optimizer, which can predict
update steps using existing knowledge instead of based on current gradients only.

Algorithm 1 Meta continual learning for training A4

procedure META-CONTINUAL-LEARNING(fg, he, To) T: an independent meta-training dataset, containing

for all 7 ;-1 in(7;)do subtasks similar to the continual learning tasks
for Epochs 1,2,3, ... do

05.;_1 < train fp for one epoch on 7o ;_i(using Adam) because there is nothing to preserve
0 <« 05 ._1

(gj—1 « VoL(fo(To,;-1))) g;_1: average squared gradients of task j — 1.

or Epochs 1,2,3, ... do
g < VoL(fo(To,5))
9(_9_77h¢(gj—179798,7'—171.) o o .
¢ < Adam (V4L(%(To,j—1U To,4)))) the optimizer h¢’s optimizer is Adam
end for
end for
end for
end procedure

leverage info from both the current and previous tasks to prevent forgetting

Meta Continual Learning

Meta Continual Learning. arXiv 2018.

Continual Learning: use the trained optimizer h¢

Algorithm 2 Continual learning using the trained A -

procedure CONTINUAL-LEARNING(fg, hg«, {T1, T2, })
for all 7; do
if - = 1 then
07 < Train fp, on 7;(using Adam) because there is nothing to preserve
else

0«07
gi—1 < VoL(fo(Ti—1))
for Epochs 1,2,3, ... do
g < VoL(fo(T:))
0 < 0 —nhy-(9i-1,9,0;_1,Z)
end for
0; <0 \v
end if
end for
end procedure

leverage info from both the current and previous tasks to prevent forgetting

Meta Continual Learning

Learning to Learn without Forgetting by Maximizing Transfer and
Minimizing Interference. ICLR 2019. (Reptile + Experience Replay)

Reptile (On First-Order Meta-Learning Algorithms. arXiv 2018.)

Algorithm 1 Reptile (serial version)

Initialize ¢, the vector of initial parameters
for iteration = 1,2,... do

Sample task 7, corresponding to loss L, on weight vectors ¢
Compute ¢ = UF(¢), denoting k steps of SGD or Adam

Update ¢ + ¢ + (¢ — ¢)

end for

[MER]

Meta Continual Learning

Learning to Learn without Forgetting by Maximizing Transfer and

Minimizing Interference. ICLR 2019. (Reptile + Experience Replay)
-1, (B)) aL(B?
S o |OL(B; -
Objective of Reptile: 0 = arg min E 2 L(B)) — o = 4
J & g N Lp,....Be~D, Zl (B;) 21 pY: pY:
= N)
B. Transfer C. Interference Maximize the inner product of

gradients of two different mini
batches for the same task.

large inner product small inner product

[MER]

Meta Continual Learning

Learning to Learn without Forgetting by Maximizing Transfer and
Minimizing Interference. ICLR 2019. (Reptile + Experience Replay)

Reptile + Experience Replay:

il aL(X y,,> OL(x,,.Y,)

1
0 =argminEe) (o0 71E» Z Lty = 2,), —
=1 j=I1 g=1 r=1

current example + past examples Summary
o Reptile: accelerate future learning

o Experience Replay: prevent forgetting

[MER]

Meta Continual Learning

Meta-Learning Representations for Continual Learning. NIPS 2019.

. L (based on MAML)
X MAML: Find the best initial parameters

v/ MRCL: Find the best representation (encoder)

Parameter Space

Solution Manifold
/ for Task 1

W: Weights of the task-specific decoder

Joint Training
Soluion

Solution manifolds in a Solution manifolds in a An optimal trajectory during fine-

representation space not representation space ideal tuning (only decoder)
optimized for continual learning for continual learning ‘M RC R

Meta Continual Learning

Meta-Learning Representations for Continual Learning. NIPS 2019.
(based on MAML)

Meta-parameters Adaptation Parameters

Could be any differentiable

or fc layer + relu representation and at meta-testing) Algorithm 2: Meta-Training : OML
Input \ [- * Require: p(7): distribution over CLP problems

----- . l ¢S ssssssEs., Require: «, 3: step size hyperparameters

L 0 0
' [' Output 1: randomly initialize 0
: Q Q ‘ Q o |71 : O O : 2: while not done do
. . e e .
' r9 0 3: randomly initialize W
L1l v o Q @ O @ O g: rs : @ Q @ Q ® : l 4: Sample CLP problem 7; ~ p(7T)
| 58|~ 5|~ 82| 52|52 | 52| |32 s Sample Syqin from p(Si|T,)
| 28 Q g2 Q g2 Q £ §: T4|t £ ¢ Q 22 O e . Y 6: Wo=W inner loop: update decoderon S, ..
' 123 Z3 Z3 Z 3 Z3 Z 3 “ 2 7. (forj=1,2,...,kdo)
€T o O O ovr| . |? O O O J y &y)
o C|Of 2O C|1Of % 2O C|O] s | (X,Y)) = Srainl]
b ’ 9: Wj = Wj_1— aij—lgi(f9,Wj—1(Xj)7Y})
' Q O Q ; E : Q Q : 10: | end for)
LN NS NS : NS NS ' 11: Sample Sies: from p(Sk|T;)
Representation Learning Network (RLN) Prediction Learning Network (PLN) 12: Update 0 < 0 — BVoli(fo,wi (Stest[:;0]), Stestl:, 1])

13: end while outer loop: update encoder on Stest

encoder (sharedwecoder (task-specific)

fwe = &wlPe(X)) [IMRCL]

Task-Free Meta Continual Learning

Task Agnostic Continual Learning via Meta Learning. ICML 2020 LifelongML Workshop.
(Reptile + Regularization)

p(D,10,Dy.,_)p(0|Dy.,_1)
p(Dt ‘ DO:t—l)

incremental Bayes’ rule: p@|D,.) =

objective: q0) = arg H%él)l KL(%(H)HP(H | Dy.)
q

= arg ICII?QI)I - q(g)[log&?(Dt\é’, DO:t—lj] — KL(¢,(®)llg,-,()) Reptile model

T
p(D,10.Dy,,y) = p(D,| 9, = p([fyx)

D™ ={(x_1,¥,_1)s---»(x_1,¥,_1)} (@sliding window with a fixed length k)

Doesn’t care about task boundaries. 'What & How]

online changepoint detection?

S u m m ary Gaussian Process Change Point Models. ICML 2010.

Bayesian Online Changepoint Detection. 2007.

Method Task Freez . Meta- Details
Learning?
Task Free Continual o detect task boundaries by detecting plateaus on loss
) v surface using a sliding window (?)
Learning (CVPR 2019) o MAS (a regularization-based method)
CURL (NIPS 2019) J o generative replay (VAE)
o cluster samples into different tasks (dynamic expansion)
. o online variational Bayes
BGD (arXiv 2019) v o without detecting task boundaries (?)
Meta Continual Learning J o train a neural network to be optimizer
(@arXiv 2018) o use info of the previous task to prevent forgetting
MER (ICLR 2019) v o Reptile + experience replay
o MAML
MRCL (NIP> 2019 v o train an encoder instead of a parameter initialization
What & How (ICLR 2020 y y o Reptile + online variational Bayes

Workshop) o without detecting task changes (?)

