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Continual Learning - An Optimization View
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Continual Learning - An Optimization View

1. “Learning to learn without forgetting by maximizing transfer and minimizing interference” (Riemer et al., ICLR 2019)

2. “Gradient episodic memory for continual learning” (Lopez-Paz et al., NIPS 2017)

3. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks” (Finn et al., ICML 2017)
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Model-Agnostic Meta-Learning (MAML)
3

Optimize for the same objective 1



Problems: 


• Interference between old and new task still exists 


• Need to compute second-order derivative (Hessian matrix)
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MAML for Continual Learning 

Problems: 


• Interference between old 
and new task still exists  
(since old data is no longer 
available) 


• Need to compute second-
order derivative (Hessian 
matrix)

Our approach: 


• Inner update: adds regularization terms to loss function

Outer (Meta) update: adapts learning rate

• First-order approximation

according to meta-parameter importance



Inner-Update: Explicit Regularization 


regularization term
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Inner-Update: Explicit Regularization 


Inner-update objective:

moving average of importance of
-th meta-parameter m Ωj

m

Motivation: 


• Alleviate vanishing gradients


• Alleviate catastrophic forgetting

diagonal matrix, where Hj
m,m = hj

m



Inner-Update: Explicit Regularization 


Inner-update objective: Motivation: 


• Alleviate vanishing gradients


• Alleviate catastrophic forgetting


• Avoid computing Hessian matrix 
during meta-update

minimizer 



Meta-Update: Closed-form First-Order Approximation


The gradient of the inner-loss should be zero： 
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Meta-Update: Closed-form First-Order Approximation


The gradient of the inner-loss should be zero： 

Therefore:

first-order approximation



Meta-Update: Adaptive Learning Rate 


Scale the learning rate for each parameter inversely proportional to the moving average of its 
importance:

In this way:


• Changes in important parameters can be reduced


• Less important parameters allow having larger step sizes in future tasks



Meta-Parameter Importance Estimation


The importance of the -th meta-parameter can be quantified by the impact on the total 
loss after zeroing it out:
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Meta-Parameter Importance Estimation


The importance of the -th meta-parameter can be quantified by the impact on the total 
loss after zeroing it out:

m

Approximate  using first-order Taylor expansion:Lt (θ0 |θ0,m=0 )

Finally: meta-gradient, which is already 
available after inner-update



Inner-Update: Proximal Gradient Descent (PGD) 


Inner-update objective:
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Inner-update objective:
f(θk,m)
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Inner-Update: Proximal Gradient Descent (PGD) 


Inner-update objective: Modified gradient steps (                   ):

Closed-form proximal gradient update:Proximal operator of   :f



Experiments: Setup

• Datasets: MNIST Permutations, Many Permutations, Split CIFAR100, Split miniImageNet


• Architecture: MLP (2 layers, 100 ReLU units), ResNet18


• Metric: Average Accuracy (ACC), Backward Transfer (BWT)



Experiments: Result Summary for Our Method

• Outperforms commonly used baselines (EWC, GEM and A-GEM) significantly


• Better or on-par performance compared to MER and La-MAML (MAML based)


• Memory-based methods are not very effective when the size of replay buffer is small
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Experiments: Training Time

Setup:


• Measured on a single GPU


• Include time spent for memory management and 
weight importance calculation


Results:


• Faster than all baselines (while achieving higher 
or on-par accuracy)


Analysis:


• No need to compute second-order derivatives 


• Efficient weight importance calculation


• Inner-update using proximal gradient descent 



Conclusion

• Introduced a novel meta-learning algorithm for continual learning problems


• Modulated the meta-update learning rates and add explicit regularization terms to the 
inner loss to alleviate catastrophic forgetting


• The proposed method is fast, because it


• Expresses the gradient of meta-updated in closed-form to avoid accessing the Hessian 
information


• Uses proximal gradient descent to solve the inner objective easier and improve the 
computational efficiency


• Estimates parameter importance efficiently using the Taylor series



Thanks!
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