Efficient Meta-Learning for Continual Learning with **Taylor Expansion Approximation**

Xiaohan Zou Boston University

Tong Lin

Key Lab. of Machine Perception (MoE), School of AI, Center for Data Science, Peking University

IJCNN 2022 Oral

Continual Learning - An Optimization View

Catastrophic forgetting

1. "Learning to learn without forgetting by maximizing transfer and minimizing interference" (Riemer et al., ICLR 2019)

Continual Learning - An Optimization View

Existing solutions: gradient alignment²

$$\arg\min_{\theta^{j}} \left(\sum_{i=1}^{t} \ell_{i}(\theta^{j}) - \alpha \sum_{p,q \leq t} \left(\frac{\partial \ell_{p}(\theta^{j})}{\partial \theta^{j}} \cdot \frac{\partial \ell_{q}(\theta^{j})}{\partial \theta^{j}} \right) \right)$$

1. "Learning to learn without forgetting by maximizing transfer and minimizing interference" (Riemer et al., ICLR 2019) 2. "Gradient episodic memory for continual learning" (Lopez-Paz et al., NIPS 2017)

$$\arg\min_{\theta^{j}} \left(\sum_{i=1}^{t} \ell_{i}(\theta^{j}) - \alpha \sum_{p,q \leq t} \left(\frac{\partial \ell_{p}(\theta^{j})}{\partial \theta^{j}} \cdot \frac{\partial \ell_{q}(\theta^{j})}{\partial \theta^{j}} \right) \right)$$
Optimize for the same objective ¹

3. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks" (Finn et al., ICML 2017)

MAML for Continual Learning

Problems:

- Interference between old and new task still exists (because old data is no longer available)
- Need to compute second-order derivative (Hessian matrix)

$$\min_{\substack{\theta_0^j \\ 0}} \mathbb{E}_{\tau_{1:t}} \left[L_{\text{meta}} \left(\underbrace{U_k(\theta_0^j)}_{\theta_0^j} \right) \right] = \min_{\substack{\theta_0^j \\ \theta_0^j}} \mathbb{E}_{\tau_{1:t}} \left[L_{\text{meta}} \left(\theta_k^j \right) \right]$$
outer-loop

MAML for Continual Learning

Problems:

- Interference between old and new task still exists (since old data is no longer available)
- Need to compute secondorder derivative (Hessian matrix)
- Still exists

- Existing solutions:
- Store old data (privacy & memory)

MAML for Continual Learning

Problems:

- Our approach:
- Interference between old and new task still exists (since old data is no longer available)
- Need to compute secondorder derivative (Hessian matrix)

according to meta-parameter importance • Inner update: adds regularization terms to loss function Outer (Meta) update: adapts learning rate

• First-order approximation

Inner-Update: Explicit Regularization

Inner-update objective:

$$\begin{split} \theta_k^j &= \arg\min_{\theta_k^j} \ell_i(\theta_k^j) \\ &= \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \big\| \theta_{k,m}^j - \theta_{0,n}^j \right\| \\ &= \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \left\| \mathbf{H}^j(\theta_k^j - \theta_0^j) \right\|_2^2 \right\}. \end{split}$$

Motivation:

• Alleviate vanishing gradients

m

Inner-Update: Explicit Regularization

Inner-update objective:

$$\begin{split} \theta_k^j &= \arg\min_{\theta_k^j} \ell_i(\theta_k^j) & \text{moving average of importa} \\ &= \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \|\theta_{k,m}^j - \theta_{0,n}^j \| \\ &= \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \left\| \mathbf{H}^j(\theta_k^j - \theta_0^j) \right\|_2^2 \right\}. \\ &\text{diagonal matrix, where } H_{m,m}^j = \sqrt{h_m^j} \end{split}$$

Motivation:

ortance of er Ω_m^J $\left\| egin{smallmatrix} 2 \ 0,m \end{smallmatrix}
ight\|_2^2$

• Alleviate vanishing gradients

• Alleviate catastrophic forgetting

hĴ

Inner-Update: Explicit Regularization

Inner-update objective:

Motivation:

- Alleviate vanishing gradients
- Alleviate catastrophic forgetting

• Avoid computing Hessian matrix during meta-update

Meta-Update: Closed-form First-Order Approximation

The gradient of the inner-loss should be zero:

 $\nabla L(\theta_k) + \lambda \mathbf{H}^2(\theta_k - \theta_0) = 0.$

Meta-Update: Closed-form First-Order Approximation

The gradient of the inner-loss should be zero:

 $\nabla L(\theta_k) +$

Therefore:

$$\begin{aligned} \nabla_{\theta_0} L_t(\theta_k) &= \left(\frac{\partial \theta_k}{\partial \theta_0}\right)^\top \nabla L(\theta_k) \\ &+ \lambda \left(\left(\frac{\partial \theta_k}{\partial \theta_0}\right)^\top - I \right) \mathbf{H}^2(\theta_k - \theta_0) \\ &= \frac{\partial \theta_k}{\partial \theta_0} \left(\nabla L(\theta_k) + \lambda \mathbf{H}^2(\theta_k - \theta_0) \right) - \lambda \mathbf{H}^2(\theta_k - \theta_0) \\ &= \lambda \mathbf{H}^2(\theta_0 - \theta_k). \end{aligned}$$

$$\lambda \mathbf{H}^2(heta_k - heta_0) = 0.$$

$$heta_k)$$

Meta-Update: Closed-form First-Order Approximation

The gradient of the inner-loss should be zero:

Therefore:

$$\begin{split} \nabla_{\theta_0} L_t(\theta_k) &= \left(\frac{\partial \theta_k}{\partial \theta_0}\right)^\top \nabla L(\theta_k) \\ &+ \lambda \left(\left(\frac{\partial \theta_k}{\partial \theta_0}\right)^\top - I\right) \mathbf{H}^2(\theta_k - \theta_0) \\ &= \frac{\partial \theta_k}{\partial \theta_0} \left(\nabla L(\theta_k) + \lambda \mathbf{H}^2(\theta_k - \theta_0)\right) - \lambda \mathbf{H}^2(\theta_k - \theta_0) \\ &= \lambda \mathbf{H}^2(\theta_0 - \theta_k). \end{split}$$

first-order approximation

 $\nabla L(\theta_k) + \lambda \mathbf{H}^2(\theta_k - \theta_0) = 0.$

 $(\theta_k - \theta_0)$

Meta-Update: Adaptive Learning Rate

Scale the learning rate for each parameter inversely proportional to the moving average of its importance:

 $\alpha_m^j \leftarrow \frac{r}{h_m^j} \alpha_m^{j-1},$

In this way:

- Changes in important parameters can be reduced
- Less important parameters allow having larger step sizes in future tasks

Meta-Parameter Importance Estimation

The importance of the m-th meta-parameter can be quantified by the impact on the total loss after zeroing it out:

$$\Omega_m = \left| L_t(\theta_0) - L_t\left(\theta_0 \right|_{\theta_{0,m}=0} \right) \right|.$$

Meta-Parameter Importance Estimation

The importance of the *m*-th meta-parameter can be quantified by the impact on the total loss after zeroing it out:

$$\Omega_m = \left| L_t(\theta_0) - L_t\left(\theta_0\Big|_{\theta_{0,m}=0}\right) \right|.$$

Approximate $L_t(\theta_0|_{\theta_{0,m}=0})$ using first-order Taylor expansion:

$$L_t \left(\theta_0 \big|_{\theta_{0,m}=0} \right) = L_t(\theta_0) + \frac{\partial L_t(\theta_0)}{\partial \theta_{0,m}} \left(\theta_{0,m} - 0 \right) + o(\theta_{0,m})$$

Meta-Parameter Importance Estimation

The importance of the *m*-th meta-parameter can be quantified by the impact on the total loss after zeroing it out:

$$\Omega_m = \left| L_t(\theta_0) - L_t\left(\theta_0\Big|_{\theta_{0,m}=0}\right) \right|.$$

Approximate $L_t(\theta_0|_{\theta_{0,m}=0})$ using first-order Taylor expansion: $L_t \left(\theta_0 \big|_{\theta_{0,m}=0} \right) = L_t(\theta_0) - L_t(\theta_0) -$

Finally:

$$\Omega_m = \left| L_t \left(\theta_0 \big|_{\theta_{0,m}=0} \right) - L_t(\theta_0) \right| \approx \left| \frac{\partial L_t(\theta_0)}{\partial \theta_{0,m}} \theta_{0,m} \right|$$

$$+ \frac{\partial L_t(\theta_0)}{\partial \theta_{0,m}} (\theta_{0,m} - 0) + o(\theta_{0,m})$$

meta-gradient, which is already available after inner-update

Inner-update objective:

$$\theta_k^j = \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \|\theta_{k,m}^j - \theta_{0,m}^j\|_2^2 \right\}$$

Inner-update objective:

$$f(\theta_{k,m})$$

$$\theta_{k}^{j} = \arg\min_{\theta_{k}^{j}} \left\{ \mathcal{L}(\theta_{k}^{j}) + \frac{\lambda}{2} \sum_{m} h_{m}^{j} \|\theta_{k,m}^{j} - \theta_{0,m}^{j}\|_{2}^{2} \right\}$$

$$f(\theta_{k,m}) = \frac{\lambda}{2} h_m \|\theta_{k,m} - \theta_{0,m}\|_2^2$$

Inner-update objective:

$$\theta_k^j = \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \|\theta_{k,m}^j - \theta_{0,m}^j\|_2^2 \right\}$$

$$f(\theta_{k,m}) = \frac{\lambda}{2} h_m \|\theta_{k,m} - \theta_{0,m}\|_2^2$$

Proximal operator of f:

$$\operatorname{prox}_{\gamma f}(v) = \arg\min_{x} \left(f(x) + \frac{1}{2\gamma} \|x - v\|_{2}^{2} \right)$$

Inner-update objective:

$$\theta_k^j = \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \|\theta_{k,m}^j - \theta_{0,m}^j\|_2^2 \right\}$$

$$f(\theta_{k,m}) = \frac{\lambda}{2} h_m \|\theta_{k,m} - \theta_{0,m}\|_2^2$$

Proximal operator of f:

$$\operatorname{prox}_{\gamma f}(v) = \arg\min_{x} \left(f(x) + \frac{1}{2\gamma} \|x - v\|_{2}^{2} \right)$$

Modified gradient steps ($\kappa = \{1, \ldots, k\}$):

$$\hat{\theta}_{\kappa} = \theta_{\kappa-1} - \gamma \nabla L(\theta_{\kappa-1}),$$

$$\theta_{\kappa} = \operatorname{prox}_{\gamma f}(\hat{\theta}_{\kappa}),$$

Inner-update objective:

$$\theta_k^j = \arg\min_{\theta_k^j} \left\{ \mathcal{L}(\theta_k^j) + \frac{\lambda}{2} \sum_m h_m^j \|\theta_{k,m}^j - \theta_{0,m}^j\|_2^2 \right\}$$

$$f(\theta_{k,m}) = \frac{\lambda}{2} h_m \|\theta_{k,m} - \theta_{0,m}\|_2^2$$

Proximal operator of f:

$$\operatorname{prox}_{\gamma f}(v) = \arg\min_{x} \left(f(x) + \frac{1}{2\gamma} \|x - v\|_{2}^{2} \right)$$

Modified gradient steps ($\kappa = \{1, \ldots, k\}$):

$$\hat{\theta}_{\kappa} = \theta_{\kappa-1} - \gamma \nabla L(\theta_{\kappa-1}),$$

$$\theta_{\kappa} = \operatorname{prox}_{\gamma f}(\hat{\theta}_{\kappa}),$$

Closed-form proximal gradient update:

$$\theta_{\kappa,m} = \frac{\hat{\theta}_{\kappa,m} + \gamma \lambda h_m \theta_{0,m}}{\gamma \lambda h_m + 1}$$

Experiments: Setup

- Architecture: MLP (2 layers, 100 ReLU units), ResNet18
- Metric: Average Accuracy (ACC), Backward Transfer (BWT)

Method	MNIST Perm.		Many Perm.		CIFAR100		miniImageNet	
	ACC	BWT	ACC	BWT	ACC	BWT	ACC	BWT
EWC	$62.32 \pm 1.34 ~\dagger$	$-13.32 \pm 2.24 ~\dagger$	$33.46 \pm 0.46 ~\dagger$	-17.84 ± 1.15 †	39.60 ± 1.11	-23.53 ± 1.19	34.34 ± 2.06	-28.17 ± 1.49
GEM	$55.42 \pm 1.10 ~\dagger$	$-24.42 \pm 1.10 \dagger$	$32.14 \pm 0.50 ~\dagger$	$-23.52 \pm 0.87 ~\dagger$	43.41 ± 2.09	-20.76 ± 1.31	37.02 ± 1.91	-25.29 ± 2.10
A-GEM	56.04 ± 2.36	-24.05 ± 2.47	29.98 ± 1.84	-27.23 ± 1.79	43.87 ± 2.61	-23.38 ± 1.52	36.37 ± 1.56	-25.11 ± 2.92
MER	$73.46 \pm 0.45 ~\dagger$	$-9.96 \pm 0.45 ~\dagger$	$47.40 \pm 0.35 ~\dagger$	$-17.78 \pm 0.39 ~\dagger$	-	-	-	-
La-MAML	$\textbf{73.92} \pm \textbf{1.05}$	-7.91 ± 0.87	47.69 ± 0.41	-13.24 ± 0.95	61.23 ± 0.94	-19.84 ± 2.20	45.29 ± 1.76	-18.57 ± 2.94
EMCL	73.61 ± 1.12	-10.25 ± 0.73	$\textbf{48.12} \pm \textbf{1.48}$	-14.09 ± 0.74	61.95 ± 1.20	-16.48 ± 1.96	$\textbf{46.52} \pm \textbf{0.83}$	-17.45 ± 2.3

• Datasets: MNIST Permutations, Many Permutations, Split CIFAR100, Split minilmageNet

Experiments: Result Summary for Our Method

- Outperforms commonly used baselines (EWC, GEM and A-GEM) significantly
- Better or on-par performance compared to MER and La-MAML (MAML based)

Method	MNIST Perm.		Many Perm.		CIFAR100		miniImageNet	
	ACC	BWT	ACC	BWT	ACC	BWT	ACC	BWT
EWC	$62.32 \pm 1.34 ~\dagger$	$-13.32 \pm 2.24 ~\dagger$	$33.46 \pm 0.46 ~\dagger$	-17.84 ± 1.15 †	39.60 ± 1.11	-23.53 ± 1.19	34.34 ± 2.06	-28.17 ± 1.49
GEM	$55.42 \pm 1.10 ~\dagger$	$-24.42 \pm 1.10 \dagger$	$32.14 \pm 0.50 ~\dagger$	$-23.52 \pm 0.87 ~\dagger$	43.41 ± 2.09	-20.76 ± 1.31	37.02 ± 1.91	-25.29 ± 2.10
A-GEM	56.04 ± 2.36	-24.05 ± 2.47	29.98 ± 1.84	-27.23 ± 1.79	43.87 ± 2.61	-23.38 ± 1.52	36.37 ± 1.56	-25.11 ± 2.92
MER	$73.46 \pm 0.45 ~\dagger$	-9.96 ± 0.45 †	$47.40 \pm 0.35 ~\dagger$	$-17.78 \pm 0.39 ~\dagger$	-	-	-	-
La-MAML	$\textbf{73.92} \pm \textbf{1.05}$	-7.91 ± 0.87	47.69 ± 0.41	-13.24 ± 0.95	61.23 ± 0.94	-19.84 ± 2.20	45.29 ± 1.76	-18.57 ± 2.94
EMCL	73.61 ± 1.12	-10.25 ± 0.73	$\textbf{48.12} \pm \textbf{1.48}$	-14.09 ± 0.74	61.95 ± 1.20	-16.48 ± 1.96	$\textbf{46.52} \pm \textbf{0.83}$	-17.45 ± 2.33

• Memory-based methods are not very effective when the size of replay buffer is small

Experiments: Result Summary for Our Method

- Outperforms commonly used baselines (EWC, GEM and A-GEM) significantly
- Better or on-par performance compared to MER and La-MAML (MAML based)
- Memory-based methods are not very effective when the size of replay buffer is small

Fig. 1: Left: ACC and BWT for all appraoches on CIFAR learned.

Fig. 1: Left: ACC and BWT for all appraoches on CIFAR100. Right: evolution of the average test accuracy as more tasks are

Experiments: Training Time

Fig. 2: Training time for all algorithms on Split CIFAR100 and miniImageNet.

Setup:

- Measured on a single GPU
- Include time spent for memory management and weight importance calculation

Results:

• Faster than all baselines (while achieving higher or on-par accuracy)

Analysis:

- No need to compute second-order derivatives
- Efficient weight importance calculation
- Inner-update using proximal gradient descent

Conclusion

- Introduced a novel meta-learning algorithm for continual learning problems
- Modulated the meta-update learning rates and add explicit regularization terms to the inner loss to alleviate catastrophic forgetting
- The proposed method is fast, because it
 - Expresses the gradient of meta-updated in closed-form to avoid accessing the Hessian information
 - Uses proximal gradient descent to solve the inner objective easier and improve the computational efficiency
 - Estimates parameter importance efficiently using the Taylor series

IJCNN 2022 Oral

Thanks!